OUR RESEARCH

Dr. Saltzman and researchers
SEM image
Nanoparticles

The research in the Saltzman Lab is motivated by the desire to create safer and more effective medical and surgical therapy. We focus on tissue engineering and on creating better methods for drug delivery. Our group has developed technology based on the use of bio-compatible polymeric materials for the controlled delivery of drugs, proteins, and genes. We have also developed new polymeric materials that influence the growth and assembly of tissues.·

We are also committed to training a new generation of chemical and biomedical engineers. We believe in providing a stimulating and collaborative environment that promotes the free exchange of ideas and encourages creative blending of technology and modern biological science.

DRUG DELIVERY

The practice of medicine has changed dramatically in our lifetimes, and even greater changes are anticipated in the next 20 years. Drug delivery is one area of substantial progress. Drugs have long been used to improve health and extend lives, but a number of new modes of drug delivery, which were made possible primarily through the work of biomedical engineers, have entered clinical practice recently. In addition, biomedical engineers have contributed substantially to our understanding of the physiological barriers to efficient drug delivery such as transport in the microcirculation and drug movement through cells and tissues.

Still, with all of this progress, many drugs—even drugs discovered using the most advanced molecular biology strategies—have unacceptable side effects. Side effects limit our ability to design drug treatments for cancer, neurodegenerative, and infectious diseases. Our laboratory is working on alternate strategy for drug delivery, which is based on physical targeting, or placement of the delivery system at the target site.

We are currently working on the following projects:

Biodegradable Contraceptive Implants from Poly(ω-pentadecalactone-co-p-dioxanone) [poly(PDL-co-DO)], supported by FHI 360 under subcontracts from USAID and the Gates Foundation.

CED of Nanoparticles Loading with Novel Agents for Improved Treatment of Gliomas, with Joseph Piepmeier, supported by NIH.

Nanomaterials for convection-enhanced delivery of agents to treat brain tumors, support by NIH.

Targeted correction of the human CFTR gene, with Marie Egan and Peter Glazer, supported by NIH.

Multifunctional skin-adhesive nanoparticles for UV protection and anti-oxidant delivery, with Michael Girardi, supported by NIH through the Yale SPORE in Skin Cancer.

Achieving Effective Nanoparticle Targeting, support by NIH with Jordan Pober and Gregory Tietjen.

TISSUE ENGINEERING

Tissue engineering is a new field of inquiry, defined about 20 years ago, but it is emerging as an option for certain patients. The field has grown rapidly from definition to the production of clinical products. Tissue engineering combines knowledge from the biological sciences with the materials and engineering sciences to develop new approaches to repair tissues, and to develop replacements for tissues. Tissue engineering thus involves a combination of disciplines to achieve new therapies and, in some cases, entirely new approaches to therapy.

We are currently working on the following projects:

Optimizing Therapeutic Revascularization by Endothelial Cell Transplantation, with Jordan Pober, supported by NIH.

GENE EDITING

We are currently working on the following projects:

Synthetic Nanoparticles for Gene Editing in the Brain in Utero, with Peter Glazer and David Stitelman, supported by The Brain Research Foundation.

In utero nanoparticle delivery for genome editing, support by NIH with Peter Glazer and David Stitleman.

Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing, supported by NIH with Peter Glazer and Marie Egan.

BIOMATERIALS & WOUND HEALING

We are currently working on the following projects:

Design of novel polymers for delivery vehicles and devices in treatment of diabetic wounds, supported by NIH with Themis Kyriakides.

 

Research Interests

Drug Delivery
Gene Therapy
Tissue Engineering

Contact

Department of Biomedical Engineering  |  Yale University
Malone Engineering Center (map)
55 Prospect St.  |  New Haven, CT 06511

Vascular Biology & Therapeutics Program | Yale School of Medicine
Amistad Research Building (map)
10 Amistad St.  |  New Haven, CT 06520

For More Information

If you are interested in learning more about open positions in our lab, please e-mail Mark Saltzman.

For Undergraduate Research Opportunities

Thank you for your interest in a research position in our lab! We have an application process to help match interested students with mentors and current research projects. Submission of applications are rolling, but we will review all applications on September 14th (fall term) and January 18th (spring and summer term). If you have any questions about the application, please contact Melanie.reschke@yale.edu. We look forward to receiving your application.

https://goo.gl/forms/0B3rTxPpo8oXpVYA2